I ported my Soma-cube-solving algorithm to C++, to see how the implementation would be affected by the language. This time, because there's no such thing as Literate C++, I've left the program listing to the very end. I tried to write idiomatic, readable C++. For example, I overloaded operators where that seemed mathematically plausible, rather than wherever possible. Similarly, I used STL machinery as I imagine its authors intended, and tried not to disappear down the pseudo-functional rabbit-hole suggested by STL functions like
I ended up with a 388-line program (350 non-blank lines). That compares to about 150 lines in the Haskell version (about 105 non-blank lines) once the computation of statistics is included.
This is how the program performed:
The report of the work done is exactly the same as the one from the Haskell version, which is reassuring. (The solutions are also the same, though listed in a slightly different order.)
The C++ version is a little more than twice as fast: 0.03s instead of 0.07s.
What's not obvious from the source code or the numbers is how much I missed having any kind of interactive session while writing the C++ version. It's really useful, when writing code, to be able to evaluate a handful of expressions to see whether each function appears to do the right thing.
And, as promised, here's the source code:
std::transform
. I didn't try to second-guess compiler behaviour, letting functions return containers by value. And I avoided playing tricks involving the memory layout of data structures.I ended up with a 388-line program (350 non-blank lines). That compares to about 150 lines in the Haskell version (about 105 non-blank lines) once the computation of statistics is included.
This is how the program performed:
$ g++ -O2 cube.cc -o cube
$ time ./cube > solutions-c.txt
Possibilities (explored, kept) at each stage:
(4,4)
(256,130)
(9360,2334)
(168048,16625)
(1596000,26403)
(2534688,4080)
(587520,240)
Total possibilities explored: 4895876
Total possibilities kept: 49816
real 0m0.032s
user 0m0.022s
sys 0m0.006s
The report of the work done is exactly the same as the one from the Haskell version, which is reassuring. (The solutions are also the same, though listed in a slightly different order.)
The C++ version is a little more than twice as fast: 0.03s instead of 0.07s.
What's not obvious from the source code or the numbers is how much I missed having any kind of interactive session while writing the C++ version. It's really useful, when writing code, to be able to evaluate a handful of expressions to see whether each function appears to do the right thing.
And, as promised, here's the source code:
#include <iostream>
#include <set>
#include <string>
#include <sstream>
#include <vector>
using namespace std;
enum Shape { L, S, T, R, P, Q, Y, kNumShapes };
const char* plan(Shape s) {
switch (s) {
case L: return
"XXX"
"X ";
case S: return
" XX"
"XX ";
case T: return
"XXX"
" X ";
case R: return
"XX "
"X ";
case P: return
"X "
"X "
" "
"XX ";
case Q: return
" X "
" X "
" "
"XX ";
case Y: return
"XX "
"X "
" "
"X ";
}
}
char name(Shape s) {
switch (s) {
case L: return 'L';
case S: return 'S';
case T: return 'T';
case R: return 'R';
case P: return 'P';
case Q: return 'Q';
case Y: return 'Y';
}
}
const int N = 3;
struct Form { char a[N][N][N]; };
bool operator==(const Form& x, const Form& y) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
if (x.a[i][j][k] != y.a[i][j][k]) return false;
return true;
}
bool operator<(const Form& x, const Form& y) {
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
if (x.a[i][j][k] < y.a[i][j][k]) return true;
else if (x.a[i][j][k] > y.a[i][j][k]) return false;
return false;
}
ostream& operator<<(ostream& o, const Form& f) {
for (int j = 0; j < N; ++j) {
if (j > 0) o << endl;
for (int i = 0; i < N; ++i){
if (i > 0) o << " ";
o << '|';
for (int k = 0; k < N; ++k)
o << f.a[i][j][k];
o << '|';
}
}
return o;
}
Form empty() {
Form f;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
f.a[i][j][k] = ' ';
return f;
}
Form operator+(const Form& x, const Form& y) {
Form z;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k) {
char xa = x.a[i][j][k];
char ya = y.a[i][j][k];
char& za = z.a[i][j][k];
if (xa == ' ' && ya == ' ') za = ' ';
else if (ya == ' ') za = xa;
else if (xa == ' ') za = ya;
else za = '#';
}
return z;
}
string flatten(const Form& f) {
ostringstream o;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
o << f.a[i][j][k];
return o.str();
}
int as_bits(const Form& f) {
int bits = 0;
int n = 0;
string s = flatten(f);
for (string::const_iterator it = s.begin();
it != s.end();
++it, ++n)
if (*it != ' ')
bits |= 1 << n;
return bits;
}
int size(const Form& f) {
int n = 0;
string s = flatten(f);
for (string::const_iterator it = s.begin();
it != s.end();
++it)
if (*it != ' ')
++n;
return n;
}
Form default_form(Shape s) {
const char* p = plan(s);
Form f;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k) {
char& fa = f.a[i][j][k];
switch(*p) {
case 0: fa = ' '; break;
case ' ': fa = ' '; ++p; break;
default: fa = name(s); ++p;
}
}
return f;
}
Form tx(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = (k == 0) ? ' ' : f.a[i][j][k-1];
return g;
}
Form ty(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = (j == 0) ? ' ' : f.a[i][j-1][k];
return g;
}
Form tz(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = (i == 0) ? ' ' : f.a[i-1][j][k];
return g;
}
Form rx(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = f.a[j][N-1-i][k];
return g;
}
Form ry(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = f.a[k][j][N-1-i];
return g;
}
Form rz(const Form& f) {
Form g;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
g.a[i][j][k] = f.a[i][N-1-k][j];
return g;
}
vector<Form> majors(const Form& f) {
vector<Form> result;
result.push_back(f);
result.push_back(ry(f));
result.push_back(ry(ry(f)));
result.push_back(ry(ry(ry(f))));
result.push_back(rz(f));
result.push_back(rz(rz(rz(f))));
return result;
}
vector<Form> minors(const Form& f) {
vector<Form> result;
result.push_back(f);
result.push_back(rx(f));
result.push_back(rx(rx(f)));
result.push_back(rx(rx(rx((f)))));
return result;
}
bool in_bounds(Shape s, const Form& f) {
return size(default_form(s)) == size(f);
}
vector<Form> shifts(Shape s) {
vector<Form> result;
Form fi = default_form(s);
for (int i = 0; i < N; ++i) {
Form fj = fi;
for (int j = 0; j < N; ++j) {
Form fk = fj;
for (int k = 0; k < N; ++k) {
if (in_bounds(s, fk))
result.push_back(fk);
fk = tz(fk);
}
fj = ty(fj);
}
fi = tx(fi);
}
return result;
}
vector<Form> all_forms(Shape s) {
vector<Form> result;
if (s == L) {
Form f = default_form(s);
result.push_back(f);
result.push_back(ty(f));
result.push_back(tz(f));
result.push_back(ty(tz(f)));
} else {
set<Form> distinct_forms;
vector<Form> f_sh = shifts(s);
for (vector<Form>::const_iterator it_sh = f_sh.begin();
it_sh != f_sh.end();
++it_sh) {
vector<Form> f_min = minors(*it_sh);
for (vector<Form>::const_iterator it_min = f_min.begin();
it_min != f_min.end();
++it_min) {
vector<Form> f_maj = majors(*it_min);
for (vector<Form>::const_iterator it_maj = f_maj.begin();
it_maj != f_maj.end();
++it_maj) {
if (distinct_forms.find(*it_maj) == distinct_forms.end()) {
result.push_back(*it_maj);
distinct_forms.insert(*it_maj);
}
}
}
}
}
return result;
}
typedef pair<Form, int> FormBits;
vector<vector<FormBits> > combos() {
vector<vector<FormBits> > result;
for (int s = 0; s < kNumShapes; ++s) {
result.push_back(vector<FormBits>());
vector<FormBits>& forms_and_bits = result.back();
vector<Form> forms = all_forms(static_cast<Shape>(s));
for (vector<Form>::const_iterator it = forms.begin();
it != forms.end();
++it) {
forms_and_bits.push_back(FormBits(*it, as_bits(*it)));
}
}
return result;
}
struct Stats {
Stats() : tried(0), kept(0) {}
int tried;
int kept;
};
Stats operator+(const Stats& x, const Stats& y) {
Stats z;
z.tried = x.tried + y.tried;
z.kept = x.kept + y.kept;
return z;
}
template<typename C>
struct CompareBySize {
bool operator()(const C& x, const C& y) const {
return x.size() < y.size();
}
};
pair<vector<Form>, vector<Stats> > solutions() {
vector<vector<FormBits> > cs = combos();
sort(cs.begin(), cs.end(), CompareBySize<vector<FormBits> >());
vector<FormBits> partials;
vector<Stats> stats;
partials.push_back(FormBits(empty(), 0));
for (vector<vector<FormBits> >::const_iterator fbs = cs.begin();
fbs != cs.end();
++fbs) {
vector<FormBits> next_partials;
stats.push_back(Stats());
Stats& partial_stats = stats.back();
for (vector<FormBits>::const_iterator p = partials.begin();
p != partials.end();
++p)
for (vector<FormBits>::const_iterator fb = fbs->begin();
fb != fbs->end();
++fb) {
++partial_stats.tried;
if ((p->second & fb->second) == 0) {
next_partials.push_back(FormBits(p->first + fb->first,
p->second | fb->second));
++partial_stats.kept;
}
}
partials.swap(next_partials);
}
pair<vector<Form>, vector<Stats> > result;
for (vector<FormBits>::const_iterator p = partials.begin();
p != partials.end();
++p)
result.first.push_back(p->first);
result.second.swap(stats);
return result;
}
int main(int argc, char* argv[]) {
pair<vector<Form>, vector<Stats> > sols = solutions();
for (vector<Form>::const_iterator it = sols.first.begin();
it != sols.first.end();
++it)
cout << *it << endl << endl;
Stats totals;
cerr << "Possibilities (explored, kept) at each stage:" << endl;
for (vector<Stats>::const_iterator it = sols.second.begin();
it != sols.second.end();
++it) {
totals = totals + *it;
cerr << " (" << it->tried << ", " << it->kept << ')' << endl;
}
cerr << "Total possibilities explored: " << totals.tried << endl;
cerr << "Total possibilities kept: " << totals.kept << endl;
return 0;
}